63 research outputs found

    Boundary Layer Structure to Derive Marginal Condition for Spontaneous Oscillations of a Thermoacoustic Engine Coupled with a Piezoelectric Element

    Get PDF
    Abstract This paper deals with the problem to derive a marginal condition for the onset of spontaneous thermoacoustic oscillations of a gas in a circular tube, subject to a variable shape of the temperature gradient along the side wall, with one end rigidly closed and the other closed by a piezoelectric element converter. In this study the acoustic impedance of the piezo element is arbitrary in order to achieve marginal conditions between those exhibited with rigidly closed end, and those with end opened onto free atmosphere. Moreover, marginal condition is outlined adopting a variable shape of the temperature gradient with respect to the position of the stack along the tube. The marginal condition is provided at the same time with respect to variable piezo-impedance and variable position of the acoustic driver. The solution includes all dissipative effects related to the compressive and shear viscosity and the heat transmission in the boundary layer at the side wall and end wall. The formulation is given in the framework of the linear theory and the first order theory in the ratio of a boundary layer thickness to the tube radius

    Utility Scale Ground Mounted Photovoltaic Plants with Gable Structure and Inverter Oversizing for Land-Use Optimization

    Get PDF
    The paper proposes an effective layout for ground-mounted photovoltaic systems with a gable structure and inverter oversizing, which allows an optimized use of the land and, at the same time, guarantees a valuable return on investment. A case study is presented to show the technical, economic, and environmental advantages compared with conventional “fixed-tilt” and “sun-tracking” ground-mounted photovoltaic installations. The main advantage of this solution is that it maximizes the energy produced per unit of land area used; but, also considering the economic metrics, the net present value of the proposed PV arrangement solution results in a greater annual volume of energy produced and therefore of net revenues and cash flows, and greater than the compared conventional solution with modules exposed in an optimal fixed position or which make use of sun-tracking systems

    Solar Energy System in A Small Town Constituted of A Network of Photovoltaic Collectors to Produce Electricity for Homes and Hydrogen for Transport Services of Municipality

    Get PDF
    The supply of Energy resources to the villages located in inland and hilly regions, is disadvantageous both for the domestic and transport purposes. Because these conditions may produce the depopulation of the inland zone, a smart way to ease this inconvenience is to produce in situ electrical Energy for houses and fuel for cars, getting them from an available Energy source in the village, as the solar Energy. The only technology to produce hydrogen ecologically and to minimize CO2 emission, is through RES (Renewable Energy Sources). The solar energy plants must use the surfaces of buildings instead of occupying other green areas useful for agricultural activities. On this basis, we propose in this paper a demonstrative project for a village in Sardinia, consisting of photovoltaic collectors connected in a network, to provide electricity to homes and hydrogen for transport purposes

    An Energy Autonomous House Equipped with a Solar PV Hydrogen Conversion System

    Get PDF
    The use of RES in buildings is difficult for their random nature; therefore the plants using photovoltaic solar collectors must be connected to a power supply or interconnected with Energy accumulators if the building is isolated. The conversion of electricity into hydrogen technology is best suited to solve the problem and allows you to transfer the solar energy captured from day to night, from summer to winter. This paper presents the feasibility study for a house powered by PV cogeneration solar collectors that reverse the electricity on the control unit that you command by a PC to power the household, using a heat pump, an electrolytic cell for the production of hydrogen to accumulate; control units sorting to the utilities the electricity produced by the fuel cell. The following are presented: The Energy analysis of the building, the plant design, economic analysi

    The Building Information Model and the IFC standard: analysis of the characteristics necessary for the acoustic and energy simulation of buildings

    Get PDF
    The new European Directive 2014/24 / EU requires for all member States the use of BIM procedures in the construction of public buildings. The countries belonging to the European Union shall be obliged to transpose the Directive and adapt their procedures to that effect. The paper analyzes the IFC format, the only recognized by the European Directive Standards for BIM procedures, in order to assess its use for simulations of buildings. IFC, described by the ISO 16739 (2013), is today a standard that describes the topology of the constructive elements of the building and what belongs to it overall. The format includes geometrical information on the room and on all building components, including details of the type for performance (transmittance, fire resistance, sound insulation), in other words it is an independent object file for the software producers to which, according to the European Directive, it will be compulsory to refer in the near future, during the different stages of the life of a building from the design phase, to management and possible demolition at the end of life. The IFC initiative began in 1994, when an industry consortium invested in the development of a set of C ++ classes that can support the development of integrated applications. Twelve US companies joined the consortium: these companies that were included initially are called the consortium "Industry Alliance for Interoperability". In September 1995 the Alliance opened up membership to all interested parties, and in 1997 changed its name to "International Alliance for Interoperability". The new alliance was reconstituted as a non-profit organization, with the aim of developing and promoting the '' Industry Foundation Class "(IFC) as a neutral data model for the building product that were useful to gather information throughout the life cycle of a building facility. Since 2005 the Alliance has been carrying out its activities through its national chapters called SMART building. The present study aims at evaluating the IFC, comparing the information and data contained in it, with other formats already used for energy simulations of buildings such as the gbXML (Green Building XML), highlighting the missing required information and proposing the inclusion of new ones to issue the energy and acoustic simulation. More generally the attention is focused to building physics simulation software devoted to exploit the BIM model potential enabling interoperability

    Comparison Between an Artificial Neural Network and Logistic Regression in Predicting Long Term Kidney Transplantation Outcome

    Get PDF
    Predicting clinical outcome following a specific treatment is a challenge that sees physicians and researchers alike sharing the dream of a crystal ball to read into the future. In Medicine, several tools have been developed for the prediction of outcomes following drug treatment and other medical interventions. The standard approach for a binary outcome is to use logistic regression (LR) [1,2] but over the past few years artificial neural networks (ANNs) have become an increasingly popular alternative to LR analysis for prognostic and diagnostic classification in clinical medicine [3]. The growing interest in ANNs has mainly been triggered by their ability to mimic the learning processes of the human brain. The network operates in a feed-forward mode from the input layer through the hidden layers to the output layer. Exactly what interactions are modeled in the hidden layers is still under study. Each layer within the network is made up of computing nodes with remarkable data processing abilities. Each node is connected to other nodes of a previous layer through adaptable inter-neuron connection strengths known as synaptic weights. ANNs are trained for specific applications through a learning process and knowledge is usually retained as a set of connection weights [4]. The backpropagation algorithm and its variants are learning algorithms that are widely used in neural networks. With backpropagation, the input data is repeatedly presented to the network. Each time, the output is compared to the desired output and an error is computed. The error is then fed back through the network and used to adjust the weights in such a way that with each iteration it gradually declines until the neural model produces the desired outpu

    A Mathematical Model of a Solar Collector Augmented by a Flat Plate above Reflector: Optimum Inclination of Collector and Reflector

    Get PDF
    In this study a theoretical analysis of a collector augmented by a bottom booster reflector is presented. An analytical model has been developed and used to estimate the solar irradiation passing through the transparent cover of a flat collector, both with and without a bottom reflector. The analytical model is based on the anisotropic sky model and takes into account a finite length system with different angular configurations and reciprocal shading and reflections between reflector and collector. Computer simulations have been carried out in order to find the optimum angles of the reflector with respect to the plane of the collector. Optimal inclinations of the collector and reflector for each month at 39° N latitude have been identified

    Cooling Methods for Standard and Floating PV Panels

    Get PDF
    Energy and water poverty are two main challenges of the modern world. Most developing and underdeveloped countries need more efficient electricity-producing sources to overcome the problem of potable water evaporation. At the same time, the traditional way to produce energy/electricity is also responsible for polluting the environment and damaging the ecosystem. Notably, many techniques have been used around the globe, such as a photovoltaic (PV) cooling (active, passive, and combined) process to reduce the working temperature of the PV panels (up to 60 degrees C) to improve the system efficiency. For floating photovoltaic (FPV), water cooling is mainly responsible for reducing the panel temperature to enhance the production capacity of the PV panels, while the system efficiency can increase up to around 30%. At the same time, due to the water surface covering, the water loss due to evaporation is also minimized, and the water evaporation could be minimized by up to 60% depending on the total area covered by the water surfaces. Therefore, it could be the right choice for generating clean and green energy, with dual positive effects. The first is to improve the efficiency of the PV panels to harness more energy and minimize water evaporation. This review article focuses mainly on various PV and FPV cooling methods and the use and advantages of FPV plants, particularly covering efficiency augmentation and reduction of water evaporation due to the installation of PV systems on the water bodies

    Substitution Effects on the Optoelectronic Properties of Coumarin Derivatives

    Get PDF
    Coumarin derivatives have gathered major attention largely due to their versatile utility in a wide range of applications. In this framework, we report a comparative computational investigation on the optoelectronic properties of 3-phenylcoumarin and 3-heteroarylcoumarin derivatives established as enzyme inhibitors. Specifically, we concentrate on the variation in the optoelectronic characteristics for the hydroxyl group substitutions within the coumarin moiety. In order to realize our aims, all-electron density functional theory and time dependent density functional theory calculations were performed with a localized Gaussian basis-set matched with a hybrid exchange–correlation functionals. Molecular properties such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, vertical ionization (IEV) and electron affinity energies, absorption spectra, quasi-particle gap, and exciton binding energy values are examined. Furthermore, the influence of solvent on the optical properties of the molecules is considered. We found a good agreement between the experimental (8.72 eV) and calculated (8.71 eV) IEV energy values for coumarin. The computed exciton binding energy of the investigated molecules indicated their potential optoelectronics application
    • …
    corecore